Total No	o. of Questions : 8] SEAT No .
	SEAT NO.
PB35	
	[6261]-3
	S.E. (Civil)
	CONCRETE TECHNOLOGY
	(2019 Pattern) (Semester - IV) (201010)
Time . 2	1/2 Hours] [Max. Marks : 7
	ions to the candidates:
111311 ucu 1)	Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
2)	Figures to the right indicate full marks.
3)	Neat diagrams must be drawn wherever necessary.
4)	Use of non programmable calculator is allowed in the examination.
5)	Your answers will be valued as a whole.
<i>6</i>)	If necessary assume suitable data and indicate clearly.
<i>7</i>)	Use of IS codes 10262,456 is not allowed.
Q1) a)	Write short note on: [9
	i) Creep of concrete
	ii) Shrinkage of concrete
	iii) Modulus of elasticity of concrete
b)	
c)	
- /	of concrete.
	OR
Q2) a)	
£2/ u)	hammer with neat sketch. Discuss the limitations of rebound hamme
	test.
h)	

Calculate the compressive strength of following specimens of concrete[4]

Sr.	Specimen and size	Crushing load
No.		in kN
i	Cube 1 :150mm × 150mm × 150mm	580
ii	Cube 2:150mm × 150mm × 150mm	567
iii	Cylinder 1: 150 mm diameter × 300 mm height	452
iv	Cylinder 2: 150 mm diameter × 300 mm height	462

c) Calculate the split tensile strength of following specimens of concrete[4]

Sr.	Specimen and size	Splitting load
No.		in kN
i	Cylinder 1: 150 mm diameter × 300 mm height	135
ii	Cylinder 2: 150 mm diameter × 300 mm height	145
iii	Cylinder 3: 150mm diameter × 300mm height	155
iv	Cylinder 4: 150 mm diameter × 300 mm height	175

- Q3) a) What do you mean by concrete mix, design? What are the objectives in mix design? [8]
 - b) Write step by step procedure for concrete mix design by using IS 10262 method. [10]

OR

Q4) a) Design a concrete for grade M30 using IS code method for following data: [14]

Parameter Details
Grade designation : M30

Standard deviation,s : 5.00

Factor based on the grade of

concrete, X 6.50

Type of cement : OPC 53 grade conforming to

IS 8112

Workability : 75 mm(slump)

Exposure conditions Severe (for RCC)

Degree of supervision : Good

Maximum cement content : 450 kg/m³

Type of aggregate : Angular coarse aggregate

Specific gravity of cement : 3.10

Specific gravity of coarse

aggregate and fine aggregate : 2.75

Water absorption of coarse

aggregate : 0.50 %

Water absorption of fine aggregate : 1.00 %

Free surface moisture for coarse

aggregate
Free surface moisture for fine

aggregate :

Sieve Analysis

Coarse aggregate

	Anal	ysis of	Pe	ercentage	of	
IS Sieve	C	oarse	different fractions			
	aggrega	te fraction				Remarks
(mm)	I	II	Q	II	Combined	
			(50%)	(50%)	(100%)	
20	100	100	50	50	100	Conforming
10	2.80	78.30	1.4	39.15	40.55	to Table 7 of
4.75	0	8.70	0	4.35	4.35	IS 383

Fine aggregate: Conforming to grading Zone II of Table 9 of IS 383

Water content per m³ of concrete for 50mm slump:

Sr.	Nominal maximum size of aggregate	Maximum water content	
No.	(mm)	(kg/m^3)	
i)	10	208	
ii)	20	186	
iii)	40	165	

Volume of coarse aggregate per unit volume of total aggregate for water-cement/water cementitious material ratio of 0.30:

Sr.	Nominal maximum	Volume	of coarse aggre	gate per	
No.	size of aggregate of unit volume of total aggregate for				
	(mm) different zones of fine aggregate				
	.	Zone III	Zone II	Zone I	
i)	100	0.56	0.54	0.52	
ii)	12.5	0.58	0.56	0.54	
iii)	20	0.68	0.66	0.64	

Approximate air content:

Sr.	Nominal maximum size of	Entrapped air, as % of volume of
No.	aggregate (mm)	concrete
i)	10	1.0
ii)	12.5	0.8
iii)	20	0.5

[6261]-3

Minimum cement content, maximum W/C and minimum grade of concrete for different exposures with normal weight aggregates of 20 mm normal maximum size:

Sr.	Exposure	Minimum cement	Maximum	Minimum grade
No.	6	content (kg/m³)	W/C	of concrete
i)	Mila	300	0.55	M20
ii)	Moderate	300	0.50	M25
iii)	Severe	320	0.45	M30
iv	Very severe	340	0.45	M35
v)	Extreme	360	0.40	M40

b) What do you mean by:

[4]

- Mean strength
- ii) Variance
- iii) Standard deviation
- iv) Coefficient of variation
- **Q5**) a) Write short note on:

[8]

- i) Ready mix concrete (RMC)
- ii) Under water concreting
- b) Enlist concrete compaction equipments and explain any two of them.[9]

OR

Q6) a) Write short note on:

[8]

- i) Fiber reinforced concrete
- ii) Ferrocement technique
- b) What do you meant by light weight concrete and discuss its types. [9]

[6261]-3

4

Q7) a) State the durability of concrete. Enlist the factor affecting the durability of concrete and explain any two of them. [9] Write short note on: [9] b) i) Attack by sea water on concrete ii) Chloride attack on concrete Carbonation of concrete iii) OR **Q8**) a) Discuss corrosion of reinforcement in concrete. Explain in detail corrosion monitoring techniques of reinforcement and preventive measures against corresion. [9] What do you meant by the retrofitting of concrete structures? Discuss crofitting x the application of fiber reinforced polymer (FRP) and polymer impregnated concrete for the retrofitting of concrete structures. [9] AS THE PROPERTY OF THE PROPERT